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Resumo
Crises severely impact various economies and may spread across regions or sectors in a
process called contagion. Understanding this process allows foreseeing crises’ impacts and
anticipating actions that reduce their effects. Specific economic sectors may be major crisis
propagators: banking and insurance are often considered decisive in this context. In this
paper, we aim to model the U.S. economy’s sectorial interdependence using Dynamic
Bayesian Networks on nine industrial Dow Jones’ indices, daily between 2000 and 2020. As
a secondary objective, we evaluate whether the insurance industry plays a central role in
spreading crises. Several crisis periods are analyzed, from dot-com bubble to current
Covid-19 pandemic. The results reveal the subprime crisis, European debt crisis and the
2016 presidential election as the main contagious periods. The last analyzed period
–Covid-19 pandemic– was divided in two phases, showing, on phase 1, an interconnected
economic system with three main spreaders (Oil & Gas, Real Estate and Pharmaceutical)
and, on phase 2, the same configuration of the post-subprime. Finally, despite being
somehow relevant during the subprime crisis, the premise of the insurance sector’s centrality
relative to other economic sectors was proven false, as this sector reveals to be one of the
main contagion receptors.
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Analysis of Financial Contagion among Economic Sectors through Dynamic Bayesian 

Networks 

Abstract 

Crises severely impact various economies and may spread across regions or sectors in a process 

called contagion. Understanding this process allows foreseeing crises’ impacts and anticipating 

actions that reduce their effects. Specific economic sectors may be major crisis propagators: 

banking and insurance are often considered decisive in this context. In this paper, we aim to 

model the U.S. economy’s sectorial interdependence using Dynamic Bayesian Networks on 

nine industrial Dow Jones’ indices, daily between 2000 and 2020. As a secondary objective, 

we evaluate whether the insurance industry plays a central role in spreading crises. Several 

crisis periods are analyzed, from dot-com bubble to current Covid-19 pandemic. The results 

reveal the subprime crisis, European debt crisis and the 2016 presidential election as the main 

contagious periods. The last analyzed period – Covid-19 pandemic – was divided in two phases, 

showing, on phase 1, an interconnected economic system with three main spreaders (Oil & Gas, 

Real Estate and Pharmaceutical) and, on phase 2, the same configuration of the post-subprime. 

Finally, despite being somehow relevant during the subprime crisis, the premise of the 

insurance sector’s centrality relative to other economic sectors was proven false, as this sector 

reveals to be one of the main contagion receptors. 

Keywords: Contagion; Dynamic Bayesian Networks; Financial Crises; Sectorial Indices. 

1. Introduction 

Crises can be defined as extreme manifestations of the interactions between the financial 

sector and the real economy. Their origins can be domestic or external, coming from public or 

private sectors (Claessens & Kose, 2013). Financial crises severely affect economic activity 

and can trigger periods of recession (Claessens, Kose, & Terrones, 2009), spreading to various 

regions or sectors in a process called contagion. 

The evaluation of contagion effect is relevant to foresee the impacts of turbulences 

occurred between different economies, in order to anticipate political-economic interventions 

and to minimize, as far as possible, the impacts of exogenous random shocks (Dornbusch, Park, 

& Claessens, 2000). Understanding contagion and identifying its origin and propagation is 

possible not only in macroeconomic spheres, relevant to the great world crises, but also to a 

more specific extent, among sectors of an economy. Bank‐insurance deals, for instance, produce 

intra‐ and interindustry contagion in both risk and return, with larger deals producing greater 

contagion (Elyasiani, Staikouras, & Dontis-Charitos, 2016). 

Specific sectors can be major crisis propagators (Acemoglu, Ozdaglar, & Tahbaz-

Salehi, 2015; Kaserer & Klein, 2019). This was the case of the technology sector during the 

dot-com bubble, an overvaluation of the shares of companies based on internet and technology 

development in the late 1990s. Due to the speculative movement of the stock exchange occurred 

during the beginning of internet’s diffusion, it culminated in a drastic drop of stock prices when 

most of these companies did not achieve the extraordinary promised results and the Federal 

Reserve Board (FED) raised interest rates. The bubble burst caused several bankruptcies, and 

it took NASDAQ over a decade to reach its former levels. 

Thus, the study of sectorial contagion is important to better define economic policies, in 

order to avoid – or at least reduce the effects of – periods of crisis, anticipating their spread. 

Financial sectors, such as banking and insurance, are often decisive in the context of crises. 

Bank contagion can intensify systemic risk and the probability of a crisis (Pino & Sharma, 

2019). Banks tend to face problems when many of their loans deteriorate or when bonds quickly 

lose their value. This happened in crises as diverse as the Nordic banking crises in the late 

1980s, the crisis in Japan in the late 1990s and the European debt crisis in mid-2010 (Claessens 

& Kose, 2013). The most relevant case that started with this sector was the subprime crisis. 
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The subprime crisis was a result of banks’ behavior in early 2000’s, as banks began to 

collectivize high-risk debts (loans with mortgages as warrant, called subprime) with low-risk 

ones, assembling Collateralized Debt Obligation (CDO) packages, investment securities that 

were traded worldwide whose yields depended on the payment of the debts attached to them. 

When FED increased interest rates, low-income customers began to default, causing CDOs’ 

returns to decline. As a result, financial institutions around the world that had subprime-backed 

securities began to suffer the crisis’ impacts, many needing loans and intervention from their 

countries’ central banks to avoid bankruptcy (Harrington, 2009; Longstaff, 2010). 

In Sep/2008, American International Group (AIG), the world’s largest insurance 

company, had to resort to FED for an US$85 billion loan due to its liquidity needs. AIG was a 

major seller of Credit Default Swaps (CDS), meaning insurance against default of assets linked 

to mortgage bonds and corporate debts. The premise that AIG’s breakdown would have 

catastrophic systemic implications, since the insurance company was tied to several economic 

sectors (a company called too-big-to-fail), led the U.S. government to grant the loan in 

exchange for AIG’s shares, becoming the holder of 80% of its assets. Even more resources were 

injected into AIG, with the intervention reaching US$150 billion until Nov/2008. 

This situation raises the question of this premise validity, based on evidence of sectorial 

interdependence: are banking and insurance sectors the main crises propagators? Thus, this 

work aims to model the sectorial interdependence of U.S. economy through the Dynamic 

Bayesian Networks technique.  

This technique provides an innovation to contagion studies as Bayesian Inference 

(Berger & Sellke, 1987) assumes that a parameter (e.g., correlation between two sectors) is, 

itself, a random variable, therefore endowed with a probability measure. When performing 

hypothesis testing, classical inference procedures tend to use p-value as its main significance 

measure, which is a problem because p-value is not a probability measure (Greenland et al., 

2016), especially in multiple testing problems (Storey, 2002). This issue is addressed by using 

a different significance measure: the q-value. Hence, the use of Bayesian Networks (specifically 

Dynamic Bayesian Networks, which capture time series effect) provides a new methodology to 

contagion studies (Robinson & Hartemink, 2010). 

The U.S. economy was chosen because, besides being the epicenter of the 

aforementioned crises and the world’s largest economy today, there is a wide and historically 

long series of sectorial market indices in the U.S. (we use the Dow Jones index, in particular). 

As a secondary objective, we assess the assumption of the insurance sector’s centrality, relative 

to other economic sectors.  

Our work makes the following contributions: first, by treating dependency in a 

probabilistic and not merely correlational way (we are factoring the joint distribution into 

conditional marginals), we are able to follow the evolution of sectorial dependency structure 

dynamically over time, not only observing what are the existence relations, but also the 

magnitude’s variation from one period to another. Second, this work models a great variety of 

sectors that represent the U.S. economy as a whole, while previous literature either studied 

contagion among countries or a small group of specific sectors (such as the financial ones). 

Furthermore, as this is a longitudinal study, we can analyze several crises: from the dot-com 

bubble burst to the current Covid-19 pandemic. 

2. Theoretical background 

Dornbusch, Park, & Claessens (2000) define contagion as the spread of market shocks, 

with mostly negative consequences, observed through co-movements in exchange rates, stock 

prices, increases in sovereign risks and in capital flows. According to them, the occurrence of 

a crisis in a specific country can lead investors to restructure their portfolios, reconsidering their 

investments in different markets. This type of shock transmission can trigger contagion effect. 
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With the advent of financial crises in the last decades, several articles on financial 

contagion have been developed. While the former analyzes this phenomenon through its 

transmission channels, another literature stream became common: measuring contagion 

through correlation. In a seminal work, Forbes & Rigobon (2002) define contagion as "a 

significant increase in the correlations between countries, through the return of their stock 

markets, in times of crisis". However, this definition is based on Granger's causality concept 

(Granger, 1969), under which the association existence is measured by correlation, but does not 

signal a cause itself. Thus, it is not possible to infer who would be the propagator or the receptor 

of a contagion, since correlation is measured through the expectation of a linear relationship. 

Succeeding Forbes & Rigobon (2002), several studies have emerged with different 

methods for contagion analysis. Possibly, the most common way to evaluate the contagion 

effect is to analyze stock exchange indices returns – and the spread of adverse shocks – for 

different countries (although this same method can be utilized to evaluate institutions or sectors 

within a country). Aït-Sahalia, Cacho-Diaz, & Laeven (2015) use this method. In their model, 

a jump (Hawkes' process) in a region of the world or in a market segment increases the intensity 

of the jumps occurring both in the same region (self-excitation) as well as in other regions 

(cross-excitation). The authors' estimates provide evidence of self-excitation in the U.S. and in 

other markets. Furthermore, leaps in the U.S. tend to get reflected quickly in most other markets, 

while statistical evidence for the reverse transmission is much weaker. 

Following this line of financial contagion between countries, Ur Rehman (2016) uses a 

multivariate GARCH dynamic conditional correlation structure to investigate the time-varying 

conditional correlation between developed markets and emerging and frontier Asian (EFA) 

markets. The study finds that, during periods of financial turmoil, EFA markets are exposed to 

shocks and spillover effects from developed markets. Also, there is an increase in correlations 

between markets, especially during the 2008 financial crisis. 

Jaworski & Pitera (2014) also evaluate contagion among countries using multivariate 

GARCH models. Through conditional copulas, they test the existence of dependence between 

two markets and then use seven different combinations of multivariate GARCH models to 

model the contagion effect. Brechmann, Hendrich, & Czado (2013) analyze interdependencies 

in the international financial market using flexible vine copulas. The authors develop stress 

testing methods to investigate contagion effects among financial institutions (banks and 

insurers) using CDS data. The results show that the failure of a bank constitutes a larger 

systemic risk than the failure of an insurer. 

Ye, Zhu, Wu, & Miao (2016) develop a Markov regime-switching quantile regression 

model which can be used to detect financial crisis contagion. They conduct an empirical 

analysis of contagion between U.S. and some EU countries during subprime, using weekly log-

returns of the U.S. S&P 500 index, France CAC 40 index, and Germany DAX 30 index from 

2005 to 2008, covering both crisis and pre-crisis periods. The results show that, in a crisis 

situation, the interdependence between U.S. and EU countries dramatically increases. 

Several other works make use of multivariate models and correlation analysis, such as 

Elyasiani et al. (2016), Dreassi, Miani, Paltrinieri, & Sclip (2018) and Dungey, Flavin, & 

Lagoa-Varela (2020). Notably, there is a predominance not only of this methodology, but also 

of the study subject in the literature: contagion between different economies is more addressed, 

while few occurrences of sectorial contagion studies are verified. However, one could mention 

Pino & Sharma (2019), who use spatial econometrics to study contagion among American 

financial institutions during subprime, and Collet & Ielpo (2018), who measure cross-sector 

volatility spillovers in the U.S. credit market. 

A common line of study to sectorial contagion is the analysis of the relationship between 

insurers and banking institutions. Chen, Cummins, Viswanathan, & Weiss (2014) examine the 

interconnection between banks and insurers with Granger's causality tests. Significant evidence 
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of bidirectional causality is found across sectors. However, stress tests confirm that banks create 

significant systemic risk for insurers, but not the other way around. 

Cummins & Weiss (2014) examine the potential of the insurance industry to cause 

systemic risk events that spillover to other segments of the financial sector and the real 

economy. To do so, they use primary indicators of systemic risk, as well as contributing factors 

that exacerbate vulnerability to systemic events. Their main conclusion is that U.S. insurers’ 

main activities do not create systemic risk, although some lines of insurance business are more 

affected during the industry’s internal crises. 

Safa, Hassan, & Maroney (2013) discuss contagion and systemic risk in the U.S. 

financial sector by applying multivariate regression models onto the returns of banking, 

insurance, brokerage firms and savings-and-loans institutions during subprime. The hypothesis 

that AIG would be too-big-to-fail is tested as well. They concluded that AIG was not so central 

to U.S. economy as to justify the FED's contributions. Harrington (2009) analyzes AIG’s role 

during subprime and the nature of systemic risk in the insurance market, which is shown to be 

relatively low when compared to banks, especially for property–casualty insurance. 

One can still mention Elyasiani et al. (2016), Bégin, Boudreault, Doljanu, & Gauthier 

(2019) and Eckert, Gatzert, & Heidinger (2020) who analyze systemic risk between banking 

institutions and insurance companies, Kaserer & Klein (2019) and Chen & Sun (2020)  who 

analyze systemic risk within the insurance market. These works find similar results to those of 

Cummins & Weiss (2014) and Chen et al. (2014). 

With the development of computational techniques such as machine learning and neural 

networks, there has been an inovation to contagion studies. Due to the complex nature of 

financial system interconnections, network-based models are increasingly being used (Sourabh, 

Hofer, & Kandhai, 2020). Amini, Cont, & Minca (2016), for instance, analyze the stress 

spreading in a financial system represented as a large network. Introducing a criterion for the 

resilience of a large financial network in the case of bankruptcy of a small group of financial 

institutions, they quantify how contagion effect amplifies small shocks in a network with the 

same empirical properties as a real interbank network. 

Despite the predominance of linear correlation based models to evaluate contagion 

effect, in this work we use the Bayesian Networks methodology. It is an artificial intelligence 

technique expressed through a graphic statistical model that maps the joint distribution function 

of a set of random variables. Unlike the previously mentioned techniques, this methodology 

allows not only the identification of correlation and interdependence, but also of the causality’s 

direction, making it possible to identify which entities generate and/or receive contagion. 

There is a recent and growing literature of contagion that uses this methodology. 

Sourabh et al. (2020) develop a model to capture stress dependency of counterparty credit risk. 

With Bayesian networks, they calibrate the stress probability of an entity conditioned to the 

stress of another entity, using CDS data from Russian counterparts between 2010 and 2015. 

Using a similar methodology, Anagnostou, Sanchez Rivero, Sourabh, & Kandhai (2020) 

propose a method to improve credit portfolio models, incorporating contagion effects. They use 

Bayesian networks to discover the direct and indirect relationships between the credits’ flow, 

and the training of the networks is carried out using real CDS data. Contagion is shown to have 

a significant impact on the tails of credit risk distribution. 

Another example of analysis of credit between financial institutions is Chong & 

Klüppelberg (2018). The authors theorize a model of contagion among interconnected financial 

institutions, which can be borrowers and/or lenders, so that the distribution of default’s joint 

probability in the financial system can be characterized as a Bayesian network. They argue that 

this graphic structure can be used to detect systemic dependencies within the network. 

Glasserman & Young (2015) estimate the extent to which interconnections among financial 

institutions increase expected losses and defaults under a wide range of shock distributions by 
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constructing a financial network – where the nodes are financial institutions that borrow and 

lend on a significant scale. They illustrated the results with data from European banks. 

In this work, a similar approach to Carvalho & Chiann (2013) will be used. They used 

Bayesian networks to model financial contagion among 6 countries, from 1996 to 2009, using 

data from the main time series stock exchanges indices. They adjusted ARMA(1,1)-

GARCH(1,1) models to ensure that multivariate relations were not masked by the series' 

temporal self-dependence. The adjustment of the Bayesian networks was carried out from the 

residuals of each estimated model, so that a static network was estimated for each moment (pre 

and post-crises). The disposition of networks reveals contagion when, with the advent of a 

crisis, the creation or alteration of an edge’s direction is observed. But, differently from the 

authors, our innovation is to model the dependency structure directly using Dynamic Bayesian 

Networks, through a multivariate time series system. 

Moreover, instead of analyzing contagion spread among countries or financial 

institutions, as it is already common in the literature, we will analyze it among different sectors 

of the same economy. We use daily log-returns of New York Stock Exchange sectoral indices 

time series from 2000 to 2020: (1)Insurance, (2)Banking, (3)Oil&Gas, (4)Real Estate, 

(5)Construction, (6)Pharmaceutical, (7)Chemistry, (8)Retail and (9)Automotive. Using these 

diverse sectors broadly encompass the U.S. economy, as they also present great volumetry 

among the available Dow Jones sectorial indices. Also, unlike predecessor studies, this work 

uses Dynamic Bayesian Networks, which capture the dependency not only between variables 

in cross-section, but also in the temporal dimension. 

3. Methodology 

Bayesian Networks (BN) are graphical structures that represent the probabilistic 

relationships between a large number of variables and allow making probabilistic inference 

with these variables (Neapolitan, 2004). A BN consists of nodes and edges. The nodes represent 

the random variables and the missing edges between them specify properties of conditional 

independence between the variables. 

3.1 Some important definitions 

A directed graph is defined as a pair (V,E) where V is a finite non-empty set whose 

elements are called nodes and E is a set of ordered pairs of distinct elements of V called edges. 

Suppose a set of nodes [X1, X2, ..., Xk], where k ≥ 2, such that (Xi - 1, Xi) ∈ E for 2 ≤ i ≤ k. The 

set of edges connecting the k nodes, two by two, is the path from Xi to Xj, Ɐ i and j. 

Let G = (V,E) be a directional and acyclic graph (DAG), where V is a finite set of nodes 

and E is a finite set of directional edges between the nodes. Each of the nodes v ∈ V of this 

graph represents a random variable Xv, and compound the set of variables in G. Given any nodes 

X and Y ∈ V, if there is an edge from X to Y, X is called the parent node of Y. For each parent 

node of v, the nomenclature of pa(v) is adopted. In addition, a relational probability function 

between v and pa(v) is conditionally defined by p(xv|xpa(v)). The set of relational probabilities 

functions of the network is P. A BN for a given set of random variables is the pair (G,P). 

An important concept of BN theory is d-separation, according to which each and every 

variable is independent of its non-descendants and its non-parents, conditioned on their parents. 

Thus, a BN (G,P) can be used to map the (in)dependence relationships and the joint distribution 

of probabilities among the variables. Further definitions can be found in Neapolitan (2004). 

3.2 The Bayesian Network’s learning process 

From a statistical point of view, learning a network corresponds to estimating the model 

parameters, following some criteria and having some data set (Carvalho & Chiann, 2013). 

The Bayesian approach is used to estimate the parameters in the network. The 

uncertainty about the parameters θ is coded in a probabilistic prior distribution p(θ), which is 

updated from the data d (using the likelihood function). With this conjugation, we obtain the 

posterior distribution p(θ|d), by Bayes' Theorem, so that 
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𝑝(𝜃|𝑑) =
𝑝(𝑑|𝜃)𝑝(𝜃)

𝑝(𝑑)
, 𝜃 ∈ Θ                                                         (1)  

with Θ representing the parametric space, d is the random sample of the probability distribution 

p(x|θ) and p(d|θ) is the joint probability function (likelihood) of d. 

3.2.1 Dynamic Bayesian Networks 

Dynamic Bayesian Networks (DBN), which will be used here, extend the fundamental 

ideas behind static Bayesian networks. They incorporate associations resulting from the 

temporal relations between the quantities of interest (Nagarajan, Scutari, & Lèbre, 2013). 

Therefore, the DAG input random variables are time series related through each other's pasts. 

Multivariate time series can be modeled as a vector autoregression process VAR(p) if 

they form a stationary system. In a VAR(p) process, the variables observed at any time t ≥ p 

satisfy the equation 

𝑋(𝑡) =  𝐴1𝑋(𝑡 − 1) + ⋯ + 𝐴𝑖𝑋(𝑡 − 𝑖) + ⋯ + 𝐴𝑝𝑋(𝑡 −  𝑝) + 𝐵 + 𝜀(𝑡)           (2) 

where 

• X(t) = Xi(t), i = 1,..., k, is the vector of k variables observed at time t; 

• Ai, i = 1,..., p are coefficients matrices of size k × k; 

• B is a vector of k-size constants for each variable; 

• ε(t) is a white noises array of size k, with zero mean and time-invariant positive definite 

covariance matrix, that is, E(ε(𝑡)) = 0 e Cov(ε(𝑡)) = Σ. 

DBNs assume that dependence relationships are represented by a vector autoregression 

process, defined in Equation 2. If we assume a VAR(1) process, 𝑋(𝑡) = 𝐴𝑋(𝑡 − 1) + 𝐵 +
ε(𝑡), with ε(𝑡)  ∼  𝑁(0, Σ), then all edges define relations within two successive time periods. 

The set is defined by all nonzero coefficients in A. If an element aij, i ≠ j, is different from zero, 

then the network includes an edge from Xi(t − 1) to Xj(t). Furthermore, it is assumed that the 

error term for each variable Xi is independent of both the other variables and their error terms. 

3.2.2 The main measures for significance: local fdr and q-values  

The algorithm developed by Opgen-Rhein & Strimmer (2007) and Schäfer & Strimmer 

(2005) allows robust estimation of VAR(1) coefficients for DBNs. Graphical Gaussian Models 

(GGM) are estimated for each DAG based on the application of shrinking estimators in the 

estimated covariance and partial correlation matrices, which represent the interactions between 

the variables. The structure learning occurs by ordering the edges according to their coefficients 

magnitude and executing multiple tests of the local false discovery rate (local fdr), which tests 

for the existence of false positives (edges of null probability) and eliminate them. After this 

procedure, only the significant edges remain. 

The observed partial correlations 𝑟̃ across edges are defined by the Equation 3. 

𝑓(𝑟̃) =  𝜂0 𝑓0(𝑟̃; k) + (1 − 𝜂0) 𝑓𝐴(𝑟̃)                                           (3) 

where 𝑓0 is the null distribution, 𝜂0 is the (unknown) proportion of “null edges” and 𝑓𝐴 the 

distribution of observed partial correlations assigned to actually existing edges. The null density 

𝑓0 is given by 

𝑓0(𝑟̃; k) = (1 − 𝑟̃2)
𝑘−3

2

Γ (
𝑘
2)

𝜋
1
2Γ (

𝑘 − 1
2 )

= |𝑟̃|Be (𝑟̃2;
1

2
,
𝑘 − 1

2
),                        (4) 

where Be(x; a, b) is the Beta distribution with parameters a and b, and k represents degrees of 

freedom for 𝑓0, equals to the reciprocal variance of the null 𝑟̃. Fitting this mixture density allows 

k, 𝜂0 and even 𝑓𝐴 to be determined. Posteriorly, it is straightforward to compute the edge-

specific fdr via: 

Prob(null edge|r̃) = fdr(r̃) =
𝜂̂0𝑓0(𝑟̃; k̂)

𝑓𝑟̃
                                    (5) 
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Equation 5 denotes the local fdr as the posterior probability that an edge is null given 𝑟̃. 

During the estimation process, the q-values associated with each edge and the probabilities of 

an edge being non-null (1-fdr) are computed. These quantities can be used to define the edges’ 

significance level. 

Q-value is a measure of significance adjusted by FDR to solve the problem of multiple 

testing, so that the q-values inform the percentage of false positives to be expected among the 

significance tests. While the p-values inform only this percentage considering the total number 

of tests performed.  

As FDR is the expected proportion of false positive findings among all rejected 

hypotheses times the probability of making at least one rejection, Storey (2002) defines the 

pFDR (positive FDR) to reflect the fact that we are conditioning on the event that positive 

findings have occurred: 

𝑝𝐹𝐷𝑅 = 𝔼 (
𝑉
𝑅

|𝑅 > 0),                                                             (6) 

where V is the number of type I errors (or false positive results) and R is the number of rejected 

hypothesis. For a nested set of rejection regions {Γ}, the p-value of an observed statistic T = t 

is defined as 

𝑝-𝑣𝑎𝑙𝑢𝑒(𝑡) = min{Γ:𝑡∈Γ}{Pr(𝑇 ∈ Γ|𝐻 = 0)}                                 (7) 

P-value gives a measure of the strength of the observed statistic with respect to making 

a type I error - it is the minimum type I error rate that can occur when rejecting a statistic with 

value t for the set of nested rejection regions. The q-value is a measure of the strength of an 

observed statistic with respect to pFDR – it is the minimum pFDR that can occur when rejecting 

a statistic with value t for the set of nested rejection regions. As a natural extension to pFDR, 

the q-value has the following definition. For an observed statistic T = t, 

𝑞(𝑡) = inf{Γ:𝑡∈Γ}{𝑝𝐹𝐷𝑅(Γ)}                                                             (8) 

The definition is simpler when the statistics are independent p-values. The nested set of 

rejection regions take the form [0; γ] and pFDR can be written in a simple form. For a set of 

hypothesis tests conducted with independent p-values, the q-value of the observed p-value p is: 

𝑞(𝑡) = inf{𝛾≥𝑝}{𝑝𝐹𝐷𝑅(γ)} =  inf{𝛾≥𝑝} {
𝜋0𝛾

Pr (𝑃 ≤ 𝛾)
}                                (9) 

The q-value is closely related to the local Bayesian Fdr statistics (Schäfer & Strimmer, 

2005). This was the reason why we chose to use it as our measure of significance. The following 

definitions are found in Efron (2005). 

The Bayesian posterior probability that a case is null given z, by definition the local 

false discovery rate, is 

 Fdr(𝑧) ≡  𝑃𝑟{null|𝑧} =  
𝑝0𝑓0(𝑧)

𝑓(𝑧)
=  

𝑓0
+(𝑧)

𝑓(𝑧)
,                                             (10)  

where  𝑝0 = Pr{null} , 𝑓0(𝑧) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑓 𝑛𝑢𝑙𝑙,   
             𝑝1 = Pr{non − null} , 𝑓1(𝑧) = 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 𝑖𝑓 𝑛𝑜𝑛-𝑛𝑢𝑙𝑙.   

The Benjamini-Hochberg’s false discovery rate theory relies on tail areas rather than 

densities. Letting 𝐹0(𝑧) 𝑎𝑛𝑑 𝐹1(𝑧) be the cumulative distribution functions corresponding to 

𝑓0(𝑧) 𝑎𝑛𝑑 𝑓1(𝑧), define 𝐹0
+(𝑧) =  𝑝0𝐹0(𝑧) 𝑎𝑛𝑑 𝐹0(𝑧) =  𝑝0𝐹0(𝑧) +  𝑝1𝐹1(𝑧). Then the 

posterior probability of a case being null given that its z-value, Z is less than some value z is 

Fdr(𝑧) ≡  𝑃𝑟{null|𝑍 ≤  𝑧} =
𝐹0

+(𝑧)

𝐹(𝑧)
.                                                  (11) 

Thus, Fdr(z) corresponds to the q-value defined by Storey (2002) and the value of the 

tail area false discovery rate attained at a given observed value Z = z. Fdr and fdr are analytically 

related by: 
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Fdr(𝑧) =
∫ 𝑓𝑑𝑟(𝑍)𝑓(𝑍)𝑑(𝑍)

𝑧

−∞

∫ 𝑓(𝑍)𝑑(𝑍)
𝑧

−∞

=  𝔼𝑓{fdr(𝑍)|𝑍 ≤  𝑧},                      (12) 

with 𝔼𝑓  indicating expectations with respect to 𝑓(𝑧).That is, Fdr(z) is the average of fdr(Z) for 

Z ≤ z. Fdr(z) will be less than fdr(z) in the usual situation where fdr(z) decreases as |z| gets 

large. Further details on the algorithm can be found in Schäfer & Strimmer (2005) and Opgen-

Rhein & Strimmer (2007). 

Finally, each new DAG (posterior distribution) is composed of data from the previous 

DAG (prior distribution) plus that period’s data (likelihood). Thus, the parameters are updated 

sequentially over time, so that the past of the dependency parameters influences the estimation 

of future dependence. The first prior is uniform. The networks’ disposition reveals contagion 

when, with the advent of a crisis, the creation or change of an edge’s direction is observed. 

4. Results analysis 

Contagion analysis widely makes use of stock markets data, as first defined by Forbes 

& Rigobon (2002). As examples of recent studies that also use this kind of data, there are Aït-

Sahalia et al. (2015), Ye et al. (2016), Ur Rehman (2016) and Chen & Sun (2020), already cited 

in section 2 of this work. 

Our dataset comes from the sectorial composition of the Dow Jones index, one of the 

main indicators of U.S. financial market movement. It covers the period from February 14th, 

2000 to September 30th, 2020, with 5139 observations for each index, consisting on the daily 

log-returns of each sector: (1)Insurance, (2)Banking, (3)Oil&Gas, (4)Real Estate, 

(5)Construction, (6)Pharmacy, (7)Chemistry, (8)Retail and (9)Automotive. 

4.1 Data analysis 

Initially, all data is normalized on the same scale 100, so that it is possible to compare 

the evolution of each sectorial time series (Figure 1). 

Figure 1. Evolution of sectoral indices between 2000 and 2020. 

Source: own elaboration. 

From Figure 1 and analysis of the news, we could define periods of crisis (shaded areas 

in Figure 1), and the intermediate moments were called periods of tranquility (white areas in 

Figure 1). Table 1 explains the dates and description assigned to each period. 

Table 1. Ad-hoc definition for duration of crises. 

Period Description Beginning End Number of observations 

1 Tranquility Feb 14, 2000 Mar 09, 2000 14 

2 Dot-Com bubble Mar 10, 2000 Oct 09, 2002 641 

3 Tranquility Oct 10, 2002 Aug 22, 2005 715 

4 Katrina, Rita and Wilma hurricanes Aug 23, 2005 Nov 02, 2005 44 

5 Tranquility Nov 03, 2005 Jul 23, 2007 415 
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6 Subprime Jul 24, 2007 Mar 13, 2009 410 

7 Tranquility Mar 14, 2009 Feb 07, 2010 229 

8 European Debt Crisis Feb 08, 2010 Nov 30, 2012 704 

9 Tranquility Dec 01, 2012 Sep 29, 2014 458 

10 
Ebola, Greek government-debt crisis and 

crude prices drop 
Sep 30, 2014 Feb 11, 2016 345 

11 Tranquility Feb 12, 2016 Oct 27, 2016 180 

12 U.S. presidential election Oct 28, 2016 Dec 15, 2016 34 

13 Tranquility Dec 16, 2016 Aug 16, 2017 166 

14 Harvey hurricane Aug 17, 2017 Sep 13, 2017 19 

15 Tranquility Sep 14, 2017 Mar 21, 2018 130 

16 Trade War against China Mar 22, 2018 May 10, 2019 286 

17 Tranquility May 11, 2019 Feb 24, 2020 198 

18 Covid-19 pandemic (Phase 1) Feb 25, 2020 Jun 19, 2020 82 

19 Covid-19 pandemic (Phase 2) Jun 20, 2020 Sep 30, 2020 69 

Total Feb 14, 2000 Sep 30, 2020 5139 
Source: own elaboration. 

The beginning of crises periods was determined based on daily newspapers headlines 

research or, in the subprime case, with post crisis analysis already made by the literature 

(Harrington, 2009; Longstaff, 2010; Pino & Sharma, 2019). The beginning of tranquility 

periods consists of arbitrary dates among a time range where the series were once again quite 

stable and the news no longer showed relevant signs of crises. This method is similar to the 

ones used by Carvalho & Chiann (2013) and Cummins & Weiss (2014), as both articles 

combine the visual analyses of time series with historical periods already known to be crisis 

moments, such as 2001 terrorist attack, Subprime and Hurricane Andrew (Cummins & Weiss, 

2014) or the 1997 Asian Crisis and 1999 Brazilian Crisis (Carvalho & Chiann, 2013). 

The analysis comprehends 10 periods of crisis that correspond to approximately 51% of 

the total observations. Figure 1 shows that crises periods coincide with falls in all the series 

simultaneously. Analyzing each sector individually, we have the following behaviors: 

(i) the insurance sector shows great volatility at the beginning of the series and 

incurs in a significant fall during subprime. Then the index maintains a slight 

growth trend, with stable volatility until 2018, when the average stabilizes 

around the initial level (100), suffering a slight fall during the last crisis; 

(ii) the banking sector is not very volatile. It presents a slight initial growth, reaching 

the level of 150 before the subprime, suffers a great fall in this period, placing 

itself in the penultimate position among the sectors (only above automotive), and 

stabilizes at this level until 2020; 

(iii) the construction sector, initially stable, goes through a period of fast growth 

between the dot-com and subprime crises, suffers a sharp decline during 

subprime and continues to grow after that period, presenting high volatility only 

in periods of crisis; 

(iv) the oil&gas sector is highly volatile throughout the series. Until subprime, it 

presents growth trend. After a drop in this period, its average fluctuates a lot and 

falls again in 2014, with the drop in oil prices, moment from which a downward 

trend is installed until the end of the series. This sector had the most significant 

drop during the Covid-19 period and has ended below the initial level; 

(v) the chemical sector presents stable volatility throughout the period. The average 

is stable before the subprime and, after falling during this period, there is a slight 

growth trend, similar to the construction sector, with eventual declines during 

crises. It is one of the few sectors that returned to its level prior to the subprime 

drop (it reached the level of 150 before the subprime and 200 after the recovery); 
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(vi) the pharmaceutical sector shows high volatility at the beginning of the series, 

but then stabilizes. The drop during subprime is less pronounced than in the other 

sectors and its recovery is fast, mirroring the growth of the chemical sector; 

(vii) the real estate sector initially shows a quick growth trend, reaching the highest 

value among the indices before subprime. It has the most expressive drop in this 

period, but incurs in rapid recovery, following the same trend of the chemical 

and pharmacy sectors. The series ends just above the initial level. Volatility is 

higher pre-subprime and afterwards it stabilizes; 

(viii) the retail sector shows low volatility and average stability. It mirrors the behavior 

of the pharmaceutical sector, with a small drop during subprime and a slight 

growth trend after that period; 

(ix) the automotive sector has fallen significantly since the beginning. Its last peak 

happened during the third period, after which the decline intensified, reaching 

derisory levels after subprime, and then stabilizing until 2020. Volatility is low 

and this sector presents the lowest value (around 1) among all series in the end. 

Finally, 4 sectors ended the series with lower values than the initial 100: insurance, 

oil&gas, banking and automotive. However, oil&gas and insurance show signs of recovery. 

4.2 Modeling the series 

In order to assess the results’ sensitivity, all networks were generated with q-values 

equal to 0.05, 0.1 and 0.15, following the cutoff points recommended by Efron (2005). These 

choices reflect a conservative Bayesian factor for Fdr’s interpretation. As the results, in most 

cases, did not differ qualitatively from the intermediate level q-value=0.1, we decided not to 

present them due to absolute space restriction. However, the authors can make the results under 

the other criteria available upon request. Also due to space restriction, we have opted for not 

presenting periods 4, 5, 9, 10, 13, 14, 15, 16 and 17 networks. 

4.2.1 Results 

Figure 2. Tranquility                                         Figure 3. Subprime 
 

 

 

 

 

 

 

 

 

 

 

 

 

Source: own elaboration. 

Although all periods were segregated (Table 1), the first two DBNs did not show 

significant connections. Thus, the DBN referring to the third period presents the configuration 

from which contagion’s evolution in the following crisis periods was analyzed. It is noticeable 

that Pino & Sharma (2019), who studied subprime contagion on financial institutions, noticed 

the first contagion signals (in their case measured through correlation between the institutions) 

appearing in the system in 2003, which exactly coincides with our analysis’ third period. 

Initially, real estate, automotive, oil&gas and retail sectors present themselves as main 

propagators. Despite being defined as a tranquility scenario, this period presents great volatility 

in the series due to the international situation that disturbed the financial market. Essentially, it 

was a time when the war on terrorism was on the rise, permeated by budget deficits and the fear 

of an imminent recession, besides a rise in oil prices due to the situation in Iraq. Thus, the 

propagating roles of the oil&gas and automotive sectors in the period are justified. The 

spreading from insurance towards banking is in accordance with Chen et al. (2014), who found 

evidence of significant causality between insurance and banking institutions.  
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In Subprime, only the edge between chemical and construction sectors remained (with 

a correlation increase from 0.34 to 0.42). This relationship is explained by the construction 

sector being one of the main chemical products consumers, such as paints and coatings. Here, 

there is an edge creation between real estate and banking sectors, denoting a process of 

contagion, as well as the inversion of the edge’s direction between banking and insurance 

sectors (formerly, the insurance sector was a propagator, now it turns into a contagion receptor), 

whose correlation also increases, from 0.41 to 0.43. 

This change in the edge’s direction is interesting especially when compared to Chen et 

al. (2014)’s results. They show that the impact of banks on insurance companies is stronger and 

of longer duration than the impact of insurers on banks. Furthermore, when subjected to stress 

tests, banks create significant systemic risk for insurers, but not the other way around. 

Figure 4. Tranquility                             Figure 5. European Debt Crisis 

Source: own elaboration. 

At the 7th period there are no changes in the edges, but there is an increase in the partial 

correlation between real estate and banking (from 0.38 to 0.41) and banking and insurance 

(from 0.43 to 0.45). At the 8th period, there is a contagion process with the inclusion of the edge 

between oil&gas and construction, in addition to a correlation reduction between real estate and 

banking, and a correlation increase between banking and insurance (0.39 and 0.46 respectively). 

The European debt crisis started as a consequence of the subprime effects. As U.S. and 

European economies are strongly correlated, even more during crisis situations (Ye et al., 

2016), this crisis effects were also reflected in the USA, with decrease in exports and fall in 

investments (Na, Minjun, & Wen, 2013). The crisis effect on the exchange rate resulted in a 

wide variation in crude oil prices, hence justifying the emergence of the oil&gas sector as a 

propagator in the U.S. in this period. Furthermore, the USA invested in the production of oil 

and natural gas between 2009 and 2012, and the need to build and maintain the production 

facilities for these inputs can justify the connection with the construction sector. 

Figure 6. Tranquility                     Figure 7. Presidential elections (“Trump effect”) 

Source: own elaboration. 

From period 9 to 11 the DBNs configuration remain almost unaltered, aside from 

changes in correlations and the vanishing of oil&gas→construction edge. 

In period 12, the contagion effect is clear, with the creation of several edges. The main 

propagator (the sectors not influenced by others) are real estate, automotive and pharmaceutical. 

The main receivers are insurance and construction. Since the presidential campaign, Trump has 

generated negative expectations for the automotive trade with a protectionist policy, criticizing 
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Ford's plans to establish factories in Mexico, and demonstrating intentions to increase import 

taxes on automotive inputs. Regarding the pharmaceutical sector, one of his promises was to 

reduce drug prices, leading to a fall of this sectorial index with the election. 

At last, Trump's stance on immigration has impacted the real estate and construction 

sectors: an environment of mass deportations and severely restricted visas would have led to 

reduced real estate investment and increased construction costs, with the elimination of millions 

of jobs from this sector. Cost rises may be repassed onto home buyers or construction projects 

may be interrupted, further affecting real estate stocks. 

Fixed income assets compose typical investment instruments for the insurance 

companies. Therefore, the fall in real estate stocks directly affects this sector, justifying the 

creation of the real estate→insurance edge. The relationship between the real estate and banking 

sectors is constituted in a similar way, in which properties can be collateral assets and a measure 

of protection against credit risk (as in mortgages), so the edge between these sectors remains. 

The relationship between pharmacy and chemistry is natural. Also, the pharmaceutical 

and insurance industries are closely related in the U.S. In that country, the private insurance 

companies are fundamental for the health system (Obamacare). Also, the health insurers are 

responsible for making agreements with pharmaceutical companies to negotiate medication 

costs (Daemmrich, 2011; Danzon, 2006). Thus, the impact on drugs’ prices ends up influencing 

these companies’ relationship with insurers. The fact that medical and pharmaceutical inputs - 

such as plastic and even medicines’ inputs - come from crude oil explains the relationship 

between the pharmaceutical and oil&gas sectors. 

A drop in the automotive sector impacts the chemical industry by reducing demand for 

various inputs, as this sector is responsible for the production of metals and parts for vehicles, 

in addition to fuel. Oil&gas provides inputs for the chemical sector as well, since the latter is 

responsible for the production of petroleum derivates such as gasoline, rubber and plastic. 

Regarding the retail sector, the correlation with oil&gas is negative, in agreement with 

Kilian & Park (2009), who conclude that drops in oil prices strengthen retail sales, as a result 

of a demand’s shock (with lower prices for gasoline, consumption is reallocated to other 

sectors). Likewise, an increase in oil prices generates a reduction in demand for retail products 

and items such as consumer goods and tourism. 

Figure 8. Covid-19 (Phase 1)                 Figure 9. Covid-19 (Phase 2) – current times  
   

Source: own elaboration. 

Period 12’s configuration remains practically unaltered until period 18 (with slight 

changes in correlation). In Covid-19’s 1st phase, 10 edges cease to exist. Among the remaining 

connections there is an increase of 0.01 in the correlation of pharmacy→insurance and 

oil&gas→chemistry edges. Also, an increase of 0.02 on pharmacy→retail, a decrease of 0.02 

on the oil&gas→construction edge and a decrease of 0.01 on the retail→construction edge. 

This period brings the continuity of the insurance and construction sectors as the main 

receptors of crises. On the other hand, real estate, pharmacy and oil&gas are the main 

propagators. The greatest correlations remain between banking and insurance (0.48) and 

chemistry and construction (0.41).  
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Oil&gas suffered a major shock in this period with the occurrence of negative oil prices. 

The pharmaceutical and real estate sectors suffered more direct effects from the Covid-19 

pandemic, with social isolation, greater demand for medicines, increased unemployment rates 

and consequent renegotiation of rents. These effects spread throughout the sectorial network. 

Although contagion structures have not been created, there is the consolidation of a 

highly interconnected economic system, unlike other international crises, which presented little 

or no connection between sectors. 

The second phase of Covid-19 has as its initial milestone the announcement of vaccine 

third phase testing, conducted and developed by the University of Oxford. Although we are still 

in the middle of the pandemic, this milestone reflects a period in which the economic agents 

have already incorporated the effects of this crisis. Apparently, they are not affected by any 

other external shocks, approaching a steady state of tranquility for the indices time series. 

Also, it is noteworthy that the two greatest financial crises (subprime and the Covid-19 

first phase) not only show the same configuration of sectoral interdependence, but also Covid-

19’s second phase presents the same network as the post-subprime. Both of them present the 

same two paths of strong sectoral dependency: a financial interconnection (real 

estate→banking→insurance) and a direct relationship through inputs supply 

(chemistry→construction). The banking→insurance edge has the highest correlation (0.49). 

Analyzing the network’s evolution, the oil&gas sector appears as a propagator during 

the European debt crisis. It returns to be a propagator with Trump’s election in 2016, when the 

pharmaceutical sector also appears as propagator. Both sectors remain in that position until 

Covid-19’s first phase. The real estate sector remains a major propagator from subprime to the 

end of the series. Also, it is the main propagator for the financial area, influencing the banking 

sector and, as a consequence, the insurance as well. 

Thus, if an investor had allocated his resources at real estate and oil&gas sectors in 2000, 

his risk assessments would have only involved the behavior of these sectors in face of the 

economic situation. After all, these are the sectors that, in general, are not impacted by the 

others. On the other hand, investments in sectors that receive contagion, such as the construction 

sector, would have required a broader analysis, involving not only the peculiarities of this 

industry, but also the various sectors that affect it. As Branger, Kraft, & Meinerding (2009) 

state, contagion risk has a crucial impact on investors’ demands for protection, since it reduces 

their ability to diversify their portfolios. If investors ignore contagion or its time dimension, it 

may expose themselves to suffer large and economically significant utility losses. 

Regarding the insurance industry, it has been a receiver since the beginning (except for 

period 4), contributing relatively little to systemic losses, in agreement with Kaserer & Klein 

(2019), as well as Cummins & Weiss (2014), Brechmann et al. (2013) and Harrington (2009). 

Addressing specifically the AIG case, in agreement with Safa et al. (2013), this retroactive 

analysis indicates that, even though it has an important economic function, the insurance sector, 

as main recipient of shocks, is not essential to the point of justifying such a large injection of 

public money in a single company, not even the main player. We cannot simulate what would 

have happened if that money injection had not been made, but it is safe to say that the insurance 

sector does not play a central role in spreading crises, so governmental actions should first 

address the main propagators in order to contain the contagion effect.  

5. Final remarks 

This study aimed to model the U.S. economy’s sectorial interdependence structure 

through Dynamic Bayesian Networks, in order to capture the contagion effect in multiple 

financial crises. Furthermore, we sought to assess whether the insurance industry plays a central 

role in spreading crises relative to other economic sectors, since, during the subprime crisis, 

this sector played a major role by having the world's main insurer considered too-big-to-fail. 
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The adoption of a sophisticated machine learning modeling technique on a literature’s 

underexplored topic (sectorial contagion) has brought satisfactory results. The vast majority of 

the relationships captured by the Dynamic Bayesian Networks in different periods finds support 

on the literature, showing that future economic analyses can be enriched by using this 

instrument to capture sectorial (in)dependency relationships. Furthermore, this technique 

allows us to follow the dependency structure evolution over time, not only by verifying the 

relations’ (edges’) appearance or vanishing, but also observing the changes in correlation 

magnitudes when comparing periods. 

The results also bring important insights, such as the interrelationship raise between the 

insurance and banking sectors (going from 0.4 in period 3 to 0.49 in period 19, the biggest 

increase of all sectorial correlations). We found evidence that banking sector presents itself as 

a frequent crises propagator towards insurance, but not the other way around, in accordance 

with previous literature. It is also noticeable that the oil&gas and real estate sectors predominate 

as the main propagators throughout the period, which had not been addressed yet in other 

studies. Finally, this study was a pioneer in modeling the current configuration of the sectorial 

network during the Covid-19 pandemic, which proved to be identical to subprime’s network 

configuration. Both can be classified as the greatest financial crises during the analyzed period. 

This configuration may define the economy’s behavior in the subsequent periods until there is 

a structural change. 

Regarding limitations, our study does not model the causes of crisis but only its 

consequences, as this cause is a hidden variable to the network. Future research may address 

the issue by analyzing different sectors, other countries, focusing on relationships between 

specific sectors, or even extending this research to other periods. Comparisons with these results 

can also be made by using different methodologies. 
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