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Resumo
The stress test technique aims to understand the financial consequences of unlikely but
plausible scenarios. The importance of this exercise is accentuated in high instability and
volatility environments, such as Brazil. In this work we develop a coherent Bayesian stress
test methodology, preserving the mathematical properties of risk measures. Therefore, we
used Dynamic Bayesian Networks as method, and on the theoretical platform, we used
Arbitrage Pricing Theory. While the first provides the interdependence topology among the
variables, considering temporal dynamics and possibilities of contagion propagation, the
second captures the effects of shocks on the returns of Ibovespa index, the main performance
indicator for Brazilian equities between January/1995 and July/2021. The results indicates
that the Ibovespa index is more strongly sensitive to risk factors linked to international
investors (foreign exchange and S&P500) than to domestic elements (inflation and CDI).
Finally, the effects of extreme shocks on Ibovespa index were simulated, as well as the
computation of risk measures, as Value-at-Risk and Tail Value-at-Risk. The results suggest
that the combination S&P500 in negative state, exchange rate in positive state and IPCA in
neutral state constitutes a consistently aggressive combination, having a high capacity to
generate losses, with a significative mass of probability.
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We Will Shock You: a coherent Bayesian approach for Stress Test 

Abstract 

The stress test technique aims to understand the financial consequences of unlikely but plausible 

scenarios. The importance of this exercise is accentuated in high instability and volatility 

environments, such as Brazil. In this work we develop a coherent Bayesian stress test 

methodology, preserving the mathematical properties of risk measures. Therefore, we used 

Dynamic Bayesian Networks as method, and on the theoretical platform, we used Arbitrage 

Pricing Theory. While the first provides the interdependence topology among the variables, 

considering temporal dynamics and possibilities of contagion propagation, the second captures 

the effects of shocks on the returns of Ibovespa index, the main performance indicator for 

Brazilian equities between January/1995 and July/2021. The results indicates that the Ibovespa 

index is more strongly sensitive to risk factors linked to international investors (foreign 

exchange and S&P500) than to domestic elements (inflation and CDI). Finally, the effects of 

extreme shocks on Ibovespa index were simulated, as well as the computation of risk measures, 

as Value-at-Risk and Tail Value-at-Risk. The results suggest that the combination S&P500 in 

negative state, exchange rate in positive state and IPCA in neutral state constitutes a consistently 

aggressive combination, having a high capacity to generate losses, with a significative mass of 

probability. 

Keywords: Stress Test; financial crises; Dynamic Bayesian Networks. 

1. Introduction 

“The oldest and strongest emotion of mankind is fear, and the oldest and strongest kind 

of fear is fear of the unknown”, said H.P. Lovecraft, an exponent of horror literature, whose 

works focused on individual’s impotence in the face of the unknown, in a useful analogy to risk. 

Risk management is vital for the economic agents, especially in politically or financially 

unstable environments (Consigli, 2002; Mittnik, 2014). In this regard, Rosengren (2014) cites 

impacts of capital inadequacy in the real economy, such as reduced liquidity and restricted 

access to credit. In the face of these impacts, Brazil is a prolific testing environment for 

quantitative risk management: after all, as narrated by Castro et al. (2019), in sixty years, the 

country faced up a military dictatorship (1964-1985), a hyperinflation process (1980-1994) and 

two processes of impeachment of civilian presidents (1992 and 2016). 

 Political crises and scandals are also frequent in Brazil, with the Operation Car Wash 

as the most notable event. Rensi & Carvalho (2021) point out the consequences of this operation 

for the insurance market, strongly related with the banking sector, shown by Fonseca & 

Carvalho (2021). In this context, Brazilian companies suffer intense shocks in the volatility of 

current prices and, therefore, large fluctuations in equity values (de Oliveira et al., 2018). Thus, 

it is essential to develop accurate approaches to estimate and mitigate the risks, in addition to 

constituting sufficient reserves for scenarios in which the extreme events materialize (Obstfeld 

et al., 2009). 

Specifically for banks, aiming to mitigate the effects of the unknown events and unify 

the standardization of financial risk management, the Basel Committee on Banking Supervision 

(BCBS) presented a series of ratified agreements by more than one hundred of countries: Basel 

I (1988), Basel II (2004) and Basel III (2010). In common with all, the need for risk analysis 

mechanisms is declared, namely: (i) Value at Risk (VaR), and; (ii) Stress Test. After the 

adoption, this procedures became popular in the global financial market (Bruno, 2008; Righi & 

Ceretta, 2014). 
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The VaR is a risk measure that estimate the maximum expected loss, under usual 

circumstances, with a given confidence interval, in a given time horizon. According to 

Linsmeier & Pearson (1996), there are different approaches, which can be parametric, based on 

probabilistic distributions, or non-parametric, based on time series or Monte Carlo simulations. 

However, despite its popularity and ease of measurement, the VaR is not immune from criticism: 

(i) it does not report the worst possible losses, and; (ii) it does not respect the important property 

of sub-additivity, which may make it difficult to diversify assets (Artzner et al., 1999). 

The Stress Test, on the other hand, is capable of providing a more complete assessment 

of the potential shocks from atypical market situations, surpassing purely statistical measures 

(Rebonato, 2010). This approach is based on generating scenarios and evaluating their impacts 

on portfolios (Rebonato, 2019). According to Nagpal (2017), scenarios are created based on 

expert knowledge, shocks in macroeconomic variables, replication of past crises, or even the 

Reverse Stress Test. In the latter, starting from the lost amount, the stipulated macroeconomic 

variables are obtained and the plausibility of the simulated scenarios is verified (Kopeliovich et 

al., 2015). 

Given the ability to assess the impact of often unprecedented scenarios, the Stress Test 

expands the possibilities of the risk management process, especially in cases of catastrophic 

events. Additionally, episodes of this magnitude are those that require the greatest level of 

refinement in the methodologies used to measure and control risk. Together, these techniques 

help to understand the growing relevance of Stress Test exercises. Therefore, researching new 

techniques or improving existing ones is of paramount importance. 

Specifically, obtaining complex conditional probabilities, one of the most arduous tasks 

in risk management, can be fully achieved through Bayesian Networks. This methodology 

allows simulating scenarios while maintaining a narrative of causality. Our objective in this 

work is to propose a coherent approach to the Stress Test using Dynamic Bayesian Networks 

(Nagarajan et al., 2013), which, in addition to their intrinsic advantages, incorporate temporal 

dynamics, a feature little explored in the literature in Finance (Fonseca & Carvalho, 2021). It is 

expected that this technique will provide subsidies for a sophisticated factor model, improving 

risk management, especially in environments especially susceptible to catastrophic events. 

2. Theoretical Background 

2.1. Risk Measures 

Due to its standardization and ease of calculation, VaR was widely adopted, enabling 

the development of a vast literature in Finance. Even in Brazil, VaR became the official measure 

of risk by Circular No. 3646/2013 of the Central Bank of Brazil. However, Pérignon & Smith 

(2010) question the quality of VaR reported by commercial banks around the world, concluding 

that the historical method – the most popular – is ineffective for projecting future volatility. 

Previously, Krause (2003) had already stated that VaR would not be an adequate risk measure 

if the assets’ correlation matrix had a small number of entries compared to its matrix dimension, 

in addition to the measure being subject to manipulation by the malicious agents. 

About the parametric approach, Abad et al. (2016) evaluated the performance of VaR 

under asymmetric distributions, which are more realistic than the Gaussian one. They concluded 

that the asymmetric generalized t distribution had a better fit to global stock indices compared 

to the traditional t-Student distribution. However, the latter was more conservative, requiring 

greater capital allocation, being preferred by regulators. 

While simple, VaR is not immune from criticism. Artzner et al. (1999) defined axioms 

to classify a risk measure as coherent: (i) monotonicity; (ii) subadditivity; (iii) positive 

hegemony, and; (iv) translation invariance. However, they prove that VaR is not coherent, as it 

XLVI Encontro da ANPAD - EnANPAD 2022
On-line - 21 - 23 de set de 2022 - 2177-2576 versão online



3 
 

does not satisfy the axiom of subadditivity. In other words, in certain cases, VaR does not 

promote portfolio diversification. In this regard, Daníelsson et al. (2013) found that, by using a 

sufficiently small number of observations, the historical simulation method is prone to flaws in 

the subadditivity axiom. Nevertheless, Emmer et al. (2015) consider that the most problematic 

factor about VaR performance is not its inconsistency, but the impossibility of properly 

estimating the Tail Risks. 

To circumvent these limitations, other risk measures were proposed. Among them, 

Expected Shortfall (ES), Conditional Value-at-Risk (CVaR) and Tail Value-at-Risk (TVaR). 

Rockafellar & Uryasev (2002) argue that both have properties superior to VaR in many respects. 

But the CVaR is special as it informs the expected loss if the value stipulated by the VaR is 

exceeded, showing the flow behavior of the distribution of results. Aiming at a computationally 

less costly implementation, Khokhlov (2016) presents CVaR analytical solutions for the main 

distributions used in market risk management. However, all these techniques are guided by 

events that have already been witnessed, and their limitation in cases of unprecedented 

catastrophic occurrences is evident. 

2.2. Stress Test 

The Stress Test exercise, by its nature, has advantages over traditional risk measures 

(Gao et al., 2017). After all, its essence is in the analysis of improbable but plausible situations, 

expanding the simulation possibilities to scenarios probably not observed by conventional 

measures. Rebonato (2010) highlights the possibility of building a causal narrative, more easily 

understood by human reasoning compared to purely numerical approaches. This facilitates the 

assessment of the reasonableness of assumptions and results, in addition to improving 

communication between risk professionals and the institutions’ senior management. 

Rebonato (2017) classifies the Stress Tests into three large groups: (i) extreme-tail; (ii) 

vulnerability-driven, and; (iii) coherent-stress-testing. The first reveals the impact of extreme 

events that occurred in the past or extrapolates the loss distribution with the help of Extreme 

Value Theory (EVT). The second is based on the study of the portfolio, with the identification 

of scenarios that could impact its vulnerabilities. Finally, the third one defines not only the root 

causes (geopolitical, macro or microeconomic), but mainly identifying the transmission 

channels that link the causes to the risk factors and, finally, the impact on the portfolio. Still on 

the last category, the author emphasizes the subjectivity in the attribution of conditional 

probabilities as a fundamental factor in the construction of scenarios. However, quality and 

sensitivity tests can be applied, minimizing subjectivity, maintaining the causal narrative. 

The Stress Test, due to its high level of complexity and interdependence among market 

agents, would benefit from the use of network theory (Anand et al., 2015; Battiston & Martinez-

Jaramillo, 2018; Gong et al., 2019). The risk of contagion between numerous counterparties, 

the applicability of financial networks for the study of exogenous shocks, better understanding 

of systemic risk and tooling flexibility for the study of topics ranging from regulation, macro 

and micro-prudential, to the impact of climate change in the real economy. 

A specific technique in this field is Bayesian Networks (BN), which represent the 

conditional probabilities through directional acyclic graphs. Empirically, Gao et al. (2017), 

using the so-called Suppes-Bayes Causal Networks, found gains in precision and reduced 

computational complexity when compared to Monte Carlo methods. In addition to Rebonato 

(2010, 2017, 2019), whose methodological focus is given by Expert Static Bayesian Networks, 

this technique is also used in stress test exercises by Carraro (2018), who uses static Gaussian 

Bayesian Networks to simulate the resilience of credit institutions to exogenous shocks. 
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Also, in Carraro (2018) a comparison is made between a network whose topology was 

determined subjectively, with one obtained directly from the data via the Score-Based Learning 

method, specifically by the Hill-Climbing algorithm. This enriches risk management decision 

making by identifying possible biases in causality relationships. Additionally, there is an 

opportunity to evaluate relational changes if the network topology is obtained continuously. 

Still on the BN variants, Nagarajan et al. (2013) argue that temporality is often a 

determining factor in the study of real-world variables, and for that, Dynamic Bayesian 

Networks (DBN) should be used. Another advantage of DBN is the possibility of feedbacks 

between the variables of interest, something ignored by static Bayesian Networks. The DBN 

configuration is obtained via multivariate time series (MTS), with the aid of vector 

autoregressive (VAR) or algorithms such as Least Absolute Shrinkage and Selection Operation 

(LASSO). 

Based on the Arbitrage Pricing Theory (APT), Rebonato (2019) uses Bayesian 

Networks to propagate shocks between the studied variables, building joint probability 

distributions. With this information, it was possible to obtain several risk measures, considering 

the multiple states for the variables involved. However, the temporal dimension was not 

addressed in that work, showing a gap to be explored. 

Our proposal is to refine the Coherent-Stress-Testing introduced by Rebonato (2010), 

using Dynamic Bayesian Networks, a promising technique that encompasses the temporal 

dimension of the series in the shocks on the variables of interest (Fonseca & Carvalho, 2021; 

Nagarajan et al., 2013). Thus, we adopt a causal and coherent view, different from the usual 

risk metrics, something especially relevant in environments with high conditional variance, 

such as Brazil. 

3. Methodology 

3.1. Coherent Stress Test 

The concept of Coherent-Stress-Testing is explored by Rebonato (2010, 2017) as a 

simulation modality (microprudential and macroprudential) centered on the causal relationships 

between the studied variables. According to this approach, the root events as well as the 

transmission routes between the variables are selected. Due to its causal logic, this analysis 

becomes more intuitive and consistent with the human perception of cause-effect. 

3.2. Bayesian Networks 

The tool used to identify, to represent and to operationalize the causal and probabilistic 

component between the variables will be the Bayesian Network (BN). In the next subsections 

we present its basic structures. 

3.2.1. Graphs, Topology and Parameters 

A graph can be described as a relational graphic structure, composed of nodes and arcs. 

The graph 𝐺 = (𝑉, 𝐴)  is constituted by a set of 𝑉  nodes and 𝐴  arcs, the arc 𝑎 =  (𝑢, 𝑣) 

represents a relational component between the nodes 𝑢 and 𝑣. Classical graph theory allows the 

existence of directional (𝑢 → 𝑣)  and non-directional (𝑢 − 𝑣)  arcs to denote causality. 

However, the use of BN supposes directional acyclic graphs (DAG), in which, given the arc of 

the case 𝑢 → 𝑣, the node 𝑢 is called the parent node of 𝑣, or even 𝑝𝑎(𝑣). The configuration of 

nodes and arcs is called the BN topology. The values and probability functions that relate the 

variables are defined as the parameters of the BN. 
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3.2.2. Topological Properties 

The absence of arcs between nodes indicates conditional independence. In addition, the 

d-separation principle guarantees the node’s independence from all nodes other than its parents 

or descendants. A Markov Blanket is defined as the subset of nodes that have all the useful 

information to infer about a node 𝑢. If the subset is minimal, making it impossible to remove 

any node without loss of relevant information, the structure is called Markov Boundary. This 

minimal structure includes 𝑢, 𝑝𝑎(𝑢), the children of 𝑢, as well as the parents of the children of 

𝑢. 

Extending the Law of Total Probability, Nagarajan et al. (2013) define the Markov 

Property, representing the joint probability distribution of a random vector X as the product of 

the conditional probability distributions, where Π𝑖 is the set 𝑝𝑎(𝑋𝑖): 

𝑓𝑋(𝑋) =  ∏ 𝑓𝑋𝑖
(𝑋𝑖|Π𝑖)

𝑝
𝑖=1      (1) 

3.2.3. Learning 

Carvalho & Chiann (2013) argue that network learning presents a Bayesian behavior. 

As it is a sequential and adaptive process to new information, it is possible to estimate the new 

probabilistic distributions based on updates in the prior distributions. Therefore, 

𝑝(𝜃|𝑑) =  
𝑝(𝑑|𝜃)× 𝑝(𝜃)

𝑝(𝑑)
, 𝜃 ∈ Θ    (2) 

with 𝑝(𝜃) representing the a priori probability, 𝑑  is the random sample of the probability 

distribution 𝑝(𝑥|𝜃). The likelihood function of 𝑑 is represented by 𝑝(𝑑|𝜃), Θ is the parametric 

space in which the parameters 𝜃 are inserted. Finally, 𝑝(𝜃|𝑑) is the a posteriori distribution. 

3.2.4. Temporal Dynamics: Vectors Autoregression  

By including the temporal dimension of a BN, Dynamic Bayesian Networks (DBN) are 

obtained, whose differential lies in the ability to express the conditional relationships, 

chronologically, between the temporal series of random variables (Nagarajan et al., 2013). To 

implement this technique, vectors autoregression with memory 𝑝, 𝑉𝐴𝑅(𝑝), are used, so that for 

𝑡 ≥ 𝑝, the vector of observed variables 𝑋(𝑡) is 

𝑋(𝑡) =  𝐴1𝑋(𝑡 − 1) + ⋯ + 𝐴𝑖𝑋(𝑡 − 1) + ⋯ + 𝐴𝑝𝑋(𝑡 − 𝑝) + 𝐵 + 𝜀(𝑡)   (3) 

where 𝐴𝑖 , 𝑖 = 1, … , 𝑝 are matrices of coefficients of dimensions 𝑘 × 𝑘, with 𝑘 representing the 

number of variables, 𝐵 is a vector of constants of the same size, 𝜀(𝑡) is defined as the white 

noise vector with expected value equal to zero and positive and invariant covariance matrix. By 

verifying significant entries in the matrices 𝐴𝑖, the conditional arcs are established. 

3.2.5. Network Significance 

Given the arcs obtained by estimating the 𝑉𝐴𝑅(𝑝), it is necessary to assess the quality 

of the network through tests. Although the p-value is widely used, it is not a measure of 

probability (Amrhein et al., 2019; Greenland et al., 2016) and fails in multiple testing problems 

(Benjamini & Hochberg, 1995). For this reason, the q-value will be used (Storey, 2002), a 

measure of significance that explains the expected percentage of false positives among the tests. 

However, this measure must be adjusted by the Positive False Discovery Rate (pFDR), defined 

by Storey (2002) as the proportion of false positives among all rejected hypotheses. The formal 

definition of the q-value is: 

𝑞(𝑡) = 𝑖𝑛𝑓{Γ:𝑡𝜖Γ}{𝑝𝐹𝐷𝑅(Γ)}      (4) 

with {Γ} representing the set of reject regions. 
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3.3. Arbitrage Pricing Theory (APT) 

Aiming at the development of a theory that extended the factor logic of the Capital Asset 

Pricing Model (CAPM), Ross (1976) modeled the expected return of an asset as a function of 

a vector of macroeconomic and systemic factors. As argued by Rebonato (2019), APT can be 

described in the form of multiple states, potentiating adverse events. For that, and without loss 

of generality, suppose the existence of two macroeconomic variables Ω, Γ, with two states each 
{𝜔0, 𝜔1}, {𝛾0, 𝛾1}. Thus: 

𝑝(𝜔0, 𝛾0) ⟺ 𝑝00 = 1 

𝑝(𝜔0, 𝛾1) ⟺ 𝑝01 = 1 

𝑝(𝜔1, 𝛾0) ⟺ 𝑝10 = 1 

𝑝(𝜔1, 𝛾1) ⟺ 𝑝11 = 1                                                     (8) 

𝑟𝑖(𝑡) = 𝑟𝑓 + 𝛽𝑖Ω[𝜆Ω + 𝑓Ω
0(𝑡)] + 𝛽𝑖Γ[𝜆Γ + 𝑓Γ

0(𝑡)] + 𝜀𝑖(𝑡),   (9) 

where 𝑝𝑥𝑦  is a binary indicator, which is numerically equal to 1 (one) if the state of the 

macroeconomic variables is (𝜔𝑥, 𝛾𝑦)  and 0 (zero) otherwise. The risk-free interest rate is 

denoted 𝑟𝑓 . The sensitivity of assets as a function of a certain macroeconomic variable is 

measured by 𝛽. The risk premium of the macroeconomic variable is represented by 𝜆, while 

𝑓Ω
0(𝑡)  is the portfolio mimicking factor, associated with variable Ω  and state 0. The 

measurement of 𝛽 of asset 𝑖 in relation to factor Π is given by Equation 10, while the risk 

premium 𝜆 is described in Equation 11. 

 𝛽𝑖Π =
𝜎𝑖

𝜎Π
𝜌𝑖Π       (10) 

𝜆𝑖 = 𝑟̂𝑖 − 𝑟𝑓       (11) 

Still on Equation 10, the Pearson correlation coefficient (𝜌𝑖Π) will be replaced by the 

partial correlation coefficient obtained via DBN. This change mitigates the risk of improper 

results or spurious associations. In Equation 11, the risk-free rate considered will be set at 5% 

p.y., as it is close to the SELIC rate (the basic rate of return of the Brazilian economy) in effect 

at the time of writing this text. “0” is the normal state, in which the APT converges to the risk-

free rate plus white noise (𝐸[𝑓Ω
0(𝑡)] = 0, 𝐸[𝑓Ω

1(𝑡)] = 𝜔1). Therefore, the return expectation 

can be obtained by decomposing the probabilities by their states. 

𝑟𝑖 = 𝑟𝑓 + [𝑝00(𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ𝜆Γ)] + {𝑝01[𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ(𝜆Γ + 𝛾1)]} + {𝑝10[𝛽𝑖Ω(𝜆Ω + 𝜔1) +

𝛽𝑖Γ𝜆Γ]} + {𝑝11[𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ + 𝛾1)]}                    (12) 

4. Results Analysis 

4.1. Data and Descriptive Statistics 

Our objective in this work is to evaluate the impact of extreme exogenous shocks of 

incident risk factors on the Ibovespa, the main index of the Brazilian stock exchange. To make 

the study feasible, historical series of monthly closings of the Ibovespa and S&P500 indices 

were used, both obtained from the Yahoo!Finance website. The choice of the S&P500 index 

over another important indicator (Dow Jones) is explained by its composition methodology. 

While the Dow Jones is driven by the price of the main shares, the dynamics of the S&P500 is 

governed by the companies’ market value, in a similar way to the Ibovespa. 

The monthly periodicity was defined so that all series were on the same basis since the 

official local inflation index has monthly release. The monthly historical series of the fixed 

income returns Certificado de Depósito Interbancário (CDI), the inflation rate Índice Nacional 
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de Preços ao Consumidor Amplo (IPCA) and the US Dollar Exchange Rate (BRL/USD) were 

also analyzed. All were obtained from the Central Bank of Brazil Time Series Management 

System (series 4391, 433 and 3698, respectively). The CDI was prioritized over the SELIC due 

to its daily fluctuation. For all series, the period is between January/1995 and July/2021. 

Figure 1 shows the performance of the Ibovespa and S&P500 indices, while Figure 2 

shows the evolution of the CDI and IPCA over the years. 

Figure 1 – Ibovespa and S&P500 Historical Series 

Source: own elaboration 

Figure 2 – CDI and IPCA Historical Series 

 
Source: own elaboration 

Once the series is obtained, it is necessary to evaluate the stationarity premise of each 

one. For that, we used the classical Augmented Dickey-Fuller (ADF) test, which evaluates the 

null hypothesis of the presence of a unit root. This procedure is important because the unit root 

incidence interferes in the econometric modeling of the series by violating its stationarity. For 

all series, the results of the respective ADF tests are shown in Table 1. When the null hypothesis 

was not rejected, the transformation into log-returns was performed. Such transformation was 

not necessary for the CDI and IPCA series as they are already in the form of rates. 
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Table 1 - ADF Test results for the historical series 

Series 
Original Series 

p-Value 

Log-Return 

p-Value 

Ibovespa 0.59 0.01 

CDI 0.01 - 

IPCA 0.01 - 

S&P500 0.99 0.01 

BRL/USD 0.63 0.01 
Source: own elaboration     

4.2. Estimating the Network 

Having the series in log-returns, the DBN is estimated. From it, the partial correlations 

between the time series are extracted. Table 2 shows the partial correlations and respective q-

values of all the edges of the graph. Rebonato (2019) states that a small number of factors is 

sufficient to satisfactorily describe the variation in asset prices. Therefore, as a cutoff criterion, 

we defined as the financial results from edges which partial correlation modulus is greater than 

0.05. The algorithm used to estimate the DBN performs measurements only for VAR(1) models. 

Therefore, it is necessary to evaluate the suitability of a VAR(1) to the dynamical system. Table 

3 shows the highest estimated eigenvalues of the VAR(1), VAR(2) and VAR(3) models, as well 

as the result of the Breusch-Godfrey (BGT) test for the Ibovespa’s VAR as a function of the 

other variables. This test aims to assess the stationarity of each of the estimated models through 

the inexistence of autocorrelation between the residuals. 

As the largest eigenvalue of the VAR(1) model is less than one, and the null hypothesis 

of the BGT was not rejected, we can say that it is a stationary model. From the complete VAR(1) 

model, the significant edges of the estimated DBN were selected. Figure 3 shows the dimension 

of the remaining edges after the significance criterion (partial correlation modulus greater than 

0.05, as suggested by Efron, 2010). 

Table 2 - Partial Correlations and q-value of Network Edges 

Edge PCOR q-Value 

S&P500~Ibovespa 0.523 <0.001 

IPCA~CDI 0.387 <0.001 

USD~Ibovespa -0.159 <0.001 

USD~S&P500 -0.147 <0.001 

USD~CDI 0.080 <0.001 

IPCA~Ibovespa 0.067 <0.001 

CDI~S&P500 0.043 <0.001 

CDI~Ibovespa 0.042 <0.001 

IPCA~S&P500 -0.029 <0.001 

USD~IPCA -0.025 <0.001 
Source: own elaboration     

Table 3 – Breusch-Godfrey Stationarity Test and Higher Eigenvalue of Multivariate Systems 

Order (p) 
BG Test Higher 

Eigenvalue Statistic p-Value 

1 0.324 0.569 0.982 

2 1.193 0.551 0.979 

3 1.281 0.734 0.978 
Source: own elaboration   
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Figure 3 – Criteria for selecting relevant edges for modeling 

 

Source: own elaboration   

Once the significant edges are selected by the partial correlation criterion greater than 

0.05, Figure 4 presents the final graph of the DBN and the magnitudes of the respective 

significant arcs. It is important to emphasize that the direction of the arc does not necessarily 

(but often) denote a causal relationship, but a factorization of the distribution of the joint 

probability density function as a function of conditional probabilistic dependence. The values

represent the partial correlation between the historical series. Given the network’s topology and 

parameters, it is possible to carry out a concept test, evaluating whether the graph relations have, 

in a greater or lesser degree, qualitative significance. 

Figure 4 – DBN representative graph with significant edges 

 Source: own elaboration    

Figure 4 shows a strong correlation between the S&P500 and Ibovespa indexes. Thus, 

the performance of the Brazilian index is conditionally dependent on the performance of the 

S&P500, signaling that the external environment (S&P500 and exchange rate) is more relevant 

than domestic risk factors, materialized in the inflation rate (IPCA) and fixed-income rate (CDI), 

which follows the economy’s basic interest rate (SELIC). Corroborating this hypothesis, the 

exchange rate is negatively correlated, simultaneously with the Ibovespa and the S&P500. This 

is due to the use of the US dollar as a store of value, strengthening the currency in times of 
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pessimism. In the domestic scenario, the correlation between the IPCA and the CDI is 

remarkable, a fact consistent with the dynamics of Brazilian monetary policy. In Brazil, the 

Central Bank uses SELIC as a formal instrument to control inflation. Finally, it should be noted 

that the edge linking the IPCA to the Ibovespa, despite having a less relevant parameter, is 

consistent with the stylized fact of the correction of the shares’ fair value for inflation. 

4.3. Financial Modeling 

Once the DBN that lists all the variables was estimated, allowing the identification of 

the propagating risk sources and the adverse shock receptors, the Ibovespa and the CDI were 

identified as shock receptors from diverse sources. To meet the objective of measuring Ibovespa 

returns (as a function of the exchange rate, IPCA and S&P500), it is necessary to write the 

mathematical dependence function of each one of them following the procedure of (Rebonato, 

2019). Therefore, Table 4 presents the symbology used to define the risk factors. 

Table 4 – Definition of risk factors on the Ibovespa 

Symbol Subtitle 

Ω Factor S&P500 

𝜔𝑥 Return of S&P500 in x state 

Γ Factor USD 

𝛾𝑥  Return of Exchange Rate in x state 

Θ Factor IPCA 

𝜃𝑥  Return of IPCA in x state 

Source: own elaboration    
For each factor presented in Table 4, three states are designed: (i) negative; (ii) 

normal, and; (iii) positive, represented by indices -1, 0 and 1, respectively. As presented in 

section 3, the expected return of the incident mimicked risk factor in the normal state is 

equal to zero. However, for the positive state, the expectation of the return of the mimicking 

risk factor will suffer a shock of magnitude equal to two standard deviations above the mean, 

while in the negative state two standard deviations below the mean. Equation 13 presents 

the mathematical relation of evaluation of effects, considering all possible impact scenarios 

of shocks from risk sources on Ibovespa returns, estimated from the DBN. 

𝑟𝑖𝑏𝑜𝑣 = 𝑟𝑓 + [𝒑𝟎𝟎𝟎(𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ𝜆Θ)] + {𝒑𝟎𝟎𝟏[𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ(𝜆Θ +

𝜃1)]} + {𝒑𝟎𝟎−𝟏([𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ(𝜆Θ + 𝜃−1)])} + [𝒑𝟎𝟏𝟎(𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ(𝜆Γ + 𝛾1) +
𝛽𝑖Θ𝜆Θ)] + {𝒑𝟎𝟏𝟏[𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ(𝜆Γ + 𝛾1) + 𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑𝟎𝟏−𝟏([𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ(𝜆Γ +
𝛾1) + 𝛽𝑖Θ(𝜆Θ + 𝜃−1)])} + [𝒑𝟎−𝟏𝟎(𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ𝜆Θ)] + {𝒑𝟎−𝟏𝟏[𝛽𝑖Ω𝜆Ω +
𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑𝟎−𝟏−𝟏([𝛽𝑖Ω𝜆Ω + 𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ(𝜆Θ +
𝜃−1)])} + [𝒑𝟏𝟎𝟎(𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ𝜆Θ)] + {𝒑𝟏𝟎𝟏[𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ𝜆Γ +
𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑𝟏𝟎−𝟏([𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ(𝜆Θ + 𝜃−1)])} +
[𝒑𝟏𝟏𝟎(𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ + 𝛾1) + 𝛽𝑖Θ𝜆Θ)] + {𝒑𝟏𝟏𝟏[𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ + 𝛾1) +
𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑𝟏𝟏−𝟏([𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ + 𝛾1) + 𝛽𝑖Θ(𝜆Θ + 𝜃−1)])} +
[𝒑𝟏−𝟏𝟎(𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ𝜆Θ)] + {𝒑𝟏−𝟏𝟏[𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ +
𝛾−1) + 𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑𝟏−𝟏−𝟏([𝛽𝑖Ω(𝜆Ω + 𝜔1) + 𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ(𝜆Θ +
𝜃−1)])} + [𝒑−𝟏𝟎𝟎(𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ𝜆Θ)] + {𝒑−𝟏𝟎𝟏[𝛽𝑖Ω(𝜆Ω + 𝜔−1) +
𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑−𝟏𝟎−𝟏([𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ𝜆Γ + 𝛽𝑖Θ(𝜆Θ + 𝜃−1)])} +
[𝒑−𝟏𝟏𝟎(𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ(𝜆Γ + 𝛾1) + 𝛽𝑖Θ𝜆Θ)] + {𝒑−𝟏𝟏𝟏[𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ(𝜆Γ +
𝛾1) + 𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑−𝟏𝟏−𝟏([𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ(𝜆Γ + 𝛾1) + 𝛽𝑖Θ(𝜆Θ + 𝜃−1)])} +
[𝒑−𝟏−𝟏𝟎(𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ𝜆Θ)] + {𝒑−𝟏−𝟏𝟏[𝛽𝑖Ω(𝜆Ω + 𝜔−1) +

XLVI Encontro da ANPAD - EnANPAD 2022
On-line - 21 - 23 de set de 2022 - 2177-2576 versão online



11 
 

𝛽𝑖Γ(𝜆Γ + 𝛾−1) + 𝛽𝑖Θ(𝜆Θ + 𝜃1)]} + {𝒑−𝟏−𝟏−𝟏([𝛽𝑖Ω(𝜆Ω + 𝜔−1) + 𝛽𝑖Γ(𝜆Γ + 𝛾−1) +
𝛽𝑖Θ(𝜆Θ + 𝜃−1)])}          (13) 

4.4. Obtaining Parameters 

After the mathematical structure development, the necessary parameters for the 

simulation are obtained. Table 5 shows the values obtained for 𝛽 and 𝜆 listed in Equation 13. 

Table 5 – Betas and Lambdas 

Betas Risk Premia 

Factor Value Factor Value 

𝛽𝑖Ω 1,02718 𝜆Ω 0,00291 

𝛽𝑖Γ -0,33439 𝜆Γ 0,00154 

𝛽𝑖Θ 1,24718 𝜆Θ 0,00137 
Source: own elaboration     

To obtain the probabilities of combinations between states, each observation in the time 

series was classified into one of three groups: (i) observations smaller than the mean minus two 

standard deviations; (ii) observations greater than the mean plus two standard deviations, and; 

(iii) intermediate observations between these other two groups. After classification, it is 

possible to count the number of occurrences in each of the possible combinations of states. 

Considering that the dataframe has 317 observations, some combinations were not observed. 

Aiming at exercising stress, it is desirable that all combinations have some probability of 

occurrence, even if small. Therefore, the probability of 0.316% (corresponding to 1 observation 

in a sample of 317 occurrences) was added to each of the 26 least frequent combinations. It is 

important to note that for each probability value added to some combination, the same amount 

must be subtracted from another combination, usually the most frequent one. Furthermore, the 

nomenclature of the state will follow an informative order, denoting the states of the S&P500, 

exchange rate (USD) and IPCA, respectively. 

Table 6 – Observed and Defined Probabilities 

State Short name p(Observed) P(Final) State Short name p(Observed) P(Final) 

p000 p1 86.8% 78.5% p11-1 p15 0.0% 0.3% 

p001 p2 3.8% 4.1% p1-10 p16 0.0% 0.3% 

p00-1 p3 0.3% 0.6% p1-11 p17 0.0% 0.3% 

p010 p4 2.2% 2.5% p1-1-1 p18 0.0% 0.3% 

p011 p5 0.0% 0.3% p-100 p19 3.5% 3.8% 

p01-1 p6 0.0% 0.3% p-101 p20 0.0% 0.3% 

p0-10 p7 1.3% 1.6% p-10-1 p21 0.3% 0.6% 

p0-11 p8 0.0% 0.3% p-110 p22 0.9% 1.3% 

p0-1-1 p9 0.0% 0.3% p-111 p23 0.0% 0.3% 

p100 p10 0.6% 0.9% p-11-1 p24 0.0% 0.3% 

p101 p11 0.0% 0.3% p-1-10 p25 0.0% 0.3% 

p10-1 p12 0.0% 0.3% p-1-11 p26 0.0% 0.3% 

p110 p13 0.3% 0.6% p-1-1-1 p27 0.0% 0.3% 

p111 p14 0.0% 0.3%     
Source: own elaboration 

Finally, to obtain the mimicked factors, probability distributions were parameterized in 

order to represent the behavior of risk factors. For that, numerical methods were used that 

minimized the Bayesian Information Criterion (BIC), obtaining the most adherent distribution 

among an universe of 106 different possible distributions. After obtaining the distributions, 
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described in Table 7, 100,000 simulations of each random variable were generated and, later, 

the results were classified with the same three criteria of the combination of states. 

Table 7 – Observed and Defined Probabilities 

Factor Distribution BIC Parameters 

Ibovespa Logistic -545.3 loc≅0.0149, scale≅0.0450 

CDI 
Exponentially Modified 

Gaussian 
1,362.6 x≅2.1501, loc≅0.0058, scale≅0.0029 

IPCA Johnson's SU -1,487.9 
a≅-0.7780, b≅1.2174, loc≅0.0024, 

scale≅0.0031 

S&P500 Laplace 34.6 loc≅0.0121, scale≅0.0321 

USD Double Gamma 305.4 a≅1.1425, loc≅0.0053, scale≅0.0247 
 Source: own elaboration 

4.5. Simulation 

As a last step, a Monte Carlo simulation was carried out, repeating the following 

procedure one hundred million times: (i) a combination of states is drawn weighted by the 

probability of occurrence described in Table 6; (ii) the binary indicator of this combination of 

states is set to 1, while all other binary indicators are set to 0; (iii) Equation 13 is calculated, if 

the state combination is not neutral, i.e., it has a mimicry factor different from zero, one of the 

random variables generated and classified above is drawn; (iv) this portion is added to the risk-

free rate, and; (v) the return value obtained is stored. At the end of the simulation procedure, 

we obtained the histograms of the estimated log-return results presented in Figures 5 and 6. 

Figure 5 – Histogram of Log-Returns    Figure 6 – Left Tail Log-Returns 

  
Source: own elaboration     Source: own elaboration 

While Figure 5 presents the complete histogram of the simulation, Figure 6 shows 

exclusively the left tail, that is, the values below the risk-free rate, coloring the incidence of 

each combination of states brought in Table 6. The purpose of this separation is to show how 

different combinations of states are concentrated in different regions of the histogram. 

Complementarily, Table 8 describes the absolute frequencies of combinations of states in the 

worst-case results (1%, 0.1%, 0.01% and 0.001% worst-case scenarios). 
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Table 8 – Absolute Frequencies in Worst Cases 

  Worst-Case Scenarios 

State 1% 0.10% 0.01% 0.001% 

p-110 363,524 37,115 3,895 644 

p-100 356,654 34,452 3,330 0 

p-11-1 116,375 11,411 1,338 231 

p-10-1 73,703 7,260 710 59 

p-111 41,685 4,128 421 65 

p-1-1-1 15,140 1,867 102 1 

p-101 14,323 1,887 101 0 

p-1-10 12,205 1,340 103 0 

p-1-11 6,391 540 0 0 
      Source: own elaboration 

As explained in Table 8, we can see that the situations which presented the greatest 

losses were all linked to the “-1” status of the S&P, i.e., precisely the main risk factor incident 

on the Ibovespa. Also significant is the presence of state “1” for the exchange rate, 

corroborating the mathematical formulation of the simulation (Equation 13). Given the state 

combinations, the one that can imply the maximum loss is the “p-11-1” combination, as it 

places the factors as harmful as possible among the possibilities, so that it was this combination 

that generated the greatest simulated loss (Table 9). 

However, when analyzing Table 6, we notice that the states “p-100” and “p-110” have 

the highest observed frequencies and, consequently, the highest occurrences in the simulation. 

Although the state “p-100” has a higher probability of occurrence, this combination does not 

corroborate the extreme losses, as one can see when evaluating the last column of Table 8. The 

state "p-110" (S&P in negative state, exchange rate in positive state and IPCA in neutral state) 

has proven to be the main generator of extreme losses, having a non-negligible probability mass. 

Comparing with traditional risk measures (i.e., VaR), we performed a quantile analysis 

of the simulation. For this purpose, TVaR was obtained at different percentiles of the left tail 

(Table 9) and, finally, graphically compared (Figure 7). The tail’s heavy weight is noticeable, 

having a kurtosis of 9.79 points higher than the normal distribution. 

Table 9 – Percentile Analysis and TVaR 

Percentile Log-Return TVaR 

5.000% -0.088 -0.129 

1.000% -0.151 -0.186 

0.500% -0.174 -0.210 

0.100% -0.232 -0.266 

0.010% -0.307 -0.329 

0.001% -0.355 -0.374 

Worst Case -0.436 -0.436 
       Source: own elaboration 
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Figure 7 – Evolution of Percentiles and TVaR 

  
Source: own elaboration 

In view of the results, it is necessary to emphasize the importance of the differentiation 

of states shown in Table 6. Because, ultimately, it is through this segregation in multiple 

situations that the probabilities can be distributed in states of interest, according to the need for 

evaluation. This tactic can be used by risk or investment managers, unifying the theoretical 

tools of different areas of financial institutions under the aegis of the Bayesian perspective. 

5. Final remarks 

Our objective was to develop a coherent stress test approach, based on Bayesian logic 

and compatible with Brazilian peculiarities and instabilities. For that, two large tool blocks were 

used. The first is the methodological pillar: through Dynamic Bayesian Networks, we capture 

the structures of temporal interdependencies and possibilities of contagion between relevant 

factors in the financial and capital markets. The second is related to the theoretical platform: 

we used the Arbitrage Pricing Theory to assess the effects of shocks on the returns of the 

Ibovespa index with inputs estimated via DBN. 

 The use of Dynamic Bayesian Networks, still little explored in the literature of Finance, 

has great potential in identifying factors, guiding the modeling by showing which factors are in 

fact more relevant, as well as the way in which the factors are connected. In the context of stress 

testing, approaches involving networks are important for the study of systemic risk, denoting a 

future gap to be explored. This must be a latent concern in an increasingly interconnected and 

complex environment. 

The results were consistent with the proposed formulation, as well as demonstrating the 

practicality of the method. The time series together form a stationary system, showing that the 

adjusted Dynamic Bayesian Network was adequate to represent the joint behavior of economic 

factors. Subsequently, the estimated graph provided the structure to be modeled by the APT, as 

well as the magnitudes of dependence for calculating the sensitivities and risk premiums. At 

this point, the Ibovespa index’s characteristic is to reflect more strongly the risk appetite of the 

international investor than internal factors. 

The states’ probability matrix was also estimated, making it possible to unify, on the 

same tooling framework, the management of assets and risk. Finally, the simulation of the 

effects of extreme shocks on the Ibovespa index was carried out, as well as it was possible to 

quickly compute the measures of interest, such as VaR or TVaR. Finally, despite the 

mathematical complexity of some steps in the process, the procedure is easy to implement, 

allowing for a simplified but powerful approach to the stress test. 

-0.480

-0.430

-0.380

-0.330

-0.280

-0.230

-0.180

-0.130

-0.080

0.0%0.5%1.0%1.5%2.0%2.5%3.0%3.5%4.0%4.5%5.0%

L
o

g
-R

et
u

rn

Percentile

Percentis TVaR

XLVI Encontro da ANPAD - EnANPAD 2022
On-line - 21 - 23 de set de 2022 - 2177-2576 versão online



15 
 

For future research, one can mention the use of a greater number of factors, as well as 

replicating the process with another network topology. Transition zones between states can also 

be studied (as seen in Figure 6), or a formulation that extends this approach to the process of 

composition of investment portfolios. Other possible sophistications of this process can be 

robust methodologies for measuring the probability of states, as well as the flexibility of 

sensitivity values and risk premiums. Furthermore, it is worth questioning how the model would 

behave when obtaining daily periodicity variables. 
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